Do you have something you want to	or	? Whether i	t is a foreign	
language, a skill set, an	_, a sport, or a mus	ical instrument, _		
aa	1	ime		
to				
an effort is also important. Working h				
also figuring out the	_ way. Of course,	just k	nowledge	
without effort is qu	estion. Besides, th	ere must		
, so	for others	may not necessar	rily work for	
	know whether it is the best way for you			
However, if you choose	the fundamentally	wrong way, your	effort will not	
, the late	est findings from _	and		
psychology have demonstrated the m	echanism of learn	ing; more specific	ally, how the	
human brain forms memories and		By combining th	e scientific	
insights and your personal experience	es, you will be able	e to	the best way	
for you. How can we learn things the				

Do you have something you want to acquire or improve? Whether it is a foreign language, a skill set, an expertise, a sport, or a musical instrument, mastery requires investing a certain amount of time. Though it is impossible to enhance your skills without effort, pursuing the best way to make an effort is also important. Working hard means not only investing time and energy but also figuring out the most effective way. Of course, just collecting knowledge without effort is out of the question. Besides, there must be some individual variations, so what works for others may not necessarily work for you. You cannot ultimately know whether it is the best way for you unless you try it. However, if you choose the fundamentally wrong way, your effort will not bear fruits. Fortunately, the latest findings from neuroscience and cognitive psychology have demonstrated the mechanism of learning; more specifically, how the human brain forms memories and solves problems. By combining the scientific insights and your personal experiences, you will be able to figure out the best way for you. How can we learn things the most efficiently?

acquire	習得する	fundamentally	基本的に
mastery	熟達	bear fruits	実を結ぶ
enhance	向上させる	demonstrate	証明する
pursue	追求する	cognitive	認知の
expertise	専門知識	neuroscience	神経科学

1	knowledge can be	into two; c	leclarative knowledge and
procedural knowledge	. The former is a know	ledge of facts and informa	tion that can be
or described,	the is a	knowledge of how to per	form tasks and actions,
involving skills and	,	usually uncons	cious of. For example, knowing
that you must	"s" at the end of the	ne	is third-person
is a form of	of declarative knowledg	ge. You are consciously	, and
you can explain it. Ho	wever, as many people	know from experiences, j	ust having the knowledge
doesn't necessarily me	ean you can use	practice. If you can	"s"
without even thinking	, it is a procedural know	wledge. Some learning are	only valuable
become proc	edural knowledge. Eve	n if you learn a useful	for daily conversations
in a foreign language,	it's almost meaningless	s you can	and
i	t's needed	a foreign language, math	calculation, or specific
movements in sports,		_ declarative knowledge is	not enough to perform
and effe	ectively. Of course some	e kinds of knowledge are	even valuable as declarative
knowledge, such as th	e World \	War II 1945 a	and the of
a triangle	180 degrees. Learn	ners have to know whether	r the knowledge they are
	should be	declarative or procedur	ral knowledge. If it needs to be
procedural knowledge	, listening to lectures a	nd reading textbooks are _	; learners should
practice	they can		and subconsciously.

What we call knowledge can be divided into two categories; declarative knowledge and procedural knowledge. The former is a knowledge of facts and information that can be explicitly stated or described, while the latter is a knowledge of how to perform tasks and actions, involving skills and procedures, which you are usually unconscious of. For example, knowing that you must add an "s" at the end of the verb when the subject is thirdperson singular is a form of declarative knowledge. You are consciously aware of the rule, and you can explain it. However, as many people know from experiences, just having the knowledge doesn't necessarily mean you can use it in practice. If you can automatically put an "s" without even thinking, it is a procedural knowledge. Some learning are only valuable when they have become procedural knowledge. Even if you learn a useful phrase for daily conversations in a foreign language, it's almost meaningless unless you can recall it immediately and automatically when it's needed. Be it a foreign language, math calculation, or specific movements in sports, knowing it as declarative knowledge is not enough to perform smoothly and effectively. Of course some kinds of knowledge are even valuable as declarative knowledge, such as the fact that World War II ended in 1945 and the interior angles of a triangle add up to 180 degrees. Learners have to know whether the knowledge they are about to acquire should be held as declarative or procedural knowledge. If it needs to be procedural knowledge, listening to lectures and reading textbooks are not enough; learners should practice repeatedly so that they can perform it automatically and subconsciously.

declarative	宣言的な	recall	思い出す
procedural	手続き的な	interior angle	図形の内角
consciously	意識的に	subconsciously	無意識に
automatically	自動的に		

One of the most important strategies in effective learn	ning is called active recall. As the name
, it is a practice to actively try to remember	er the content of learning. This technique, also
retrieval practice, has been proven to i	ncrease memory,
, and identify knowledge gaps. List	ening to lectures and reading textbooks
are; true learning is completed	some form of effort to recall.
Specifically, you can take tests on, explain of	or teach your knowledge to, or
on a paper	Even just recalling the information in your mind
can be effective to some extent. For example, you can	
you learned to	oday on your way back home school. The
point is to bring the knowledge	
possible. In	
you remember things. Having a test itself becomes a	retrieval practice to enhance your
memory. Also, you can	your knowledge gaps, which can be the next
target for input learning. Taking an exam	before and after the test,
we do its effi	ciency, the importance of active recall is
A shows that the effectivenes	ss of active recall is not understood by
many. Moreover, retrieval practice is tough. Recalling	g information our memory is
, and we could be our	selves by recognizing the fact that we don't
remember or understand. However, the hardship of a	
for our growth.	

One of the most important strategies in effective learning is called active recall. As the name <u>suggests</u>, it is a practice to actively try to remember the content of learning. This technique, also termed as retrieval practice, has been proven to increase <u>long-term</u> memory, <u>aid later retention</u>, and <u>help</u> identify knowledge gaps. Listening to lectures and reading textbooks <u>alone</u> are <u>insufficient</u>; true learning is completed <u>when it involves</u> some form of effort to recall. Specifically, you can take tests early on, explain or teach your knowledge to someone else, or write it out on a blank sheet of paper. Even just recalling the information in your mind can be effective to some extent. For example, you can enhance your memory just by trying to bring to your mind what you learned today on your way back home from school. The point is to bring the knowledge out of your memory storage with the <u>least amount of clues as possible</u>. In <u>light of this</u>, the value of testing is not just to check if you remember things. Having a test itself becomes a form of retrieval practice to enhance your long-term memory. Also, you can recognize your knowledge gaps, which can be the next target for input learning. Taking an exam improves learning before and after the test, even if we do poorly on it. In spite of its efficiency, the importance of active recall is often overlooked. A survey shows that the effectiveness of active recall is not properly understood by many. Moreover, retrieval practice is tough. Recalling information from our memory is cognitively demanding, and we could be <u>disappointed</u> with ourselves by recognizing the fact that we don't remember or understand. However, the hardship of active recall may be a kind of a necessary investment for our growth.

retrieval	検索	overlook	見落とす
retention	保持	cognitively demanding	認知的に負担の大きい
insufficient	不十分な	recognize	認識する
clue	手がかり	investment	投資

A Chinese politician and poet in the	11th Century, Ouyang Xiu list	ted three situations to come up
with good; on a horse, a	pillow, and toilet seat. An inter	resting fact about human intelligence is that
the brain is	the when we are r	not actively and consciously thinking about
		scious process, so we are not
the time	, our network	k has been working in the background,
		ion, and
, when we are asleep	, the brain organizes the inform	nation we learned the day and
into long-term memo	ory. The brain continues the w	ork even when we are taking a rest or doing
something else, possibly	the following two in	nsights learning. Firstly,
that we should	our study time	one session. For
		into 1-hour sessions in 7 days,
studying for 7 hours str	raight in a day. By	study sessions, we can make the best use of
both the default mode network and n	nemory consolidation by sleep	. What matters is having the
studying, resting, and studying again	a. Another implication is that w	ve should start working on large projects or
tasks pos	sible and	Whether it is
solving a difficult math problem or v	vriting a long essay, you	early on. When you a
, don't, and take	e a step back. This is not giving	g up, The next
time you return to work, you can	the background	processing your brain has been doing.
Ouyang Xiu cor	nsciously essays or	n horseback,
good just by slee	ping. Probably he had once alr	eady on his desk, and
him, his brain	continued the work on a horse	e and a pillow.

A Chinese politician and poet in the 11th Century, Ouyang Xiu listed three suitable situations to come up with good sentences; on a horse, a pillow, and toilet seat. An interesting fact about human intelligence is that the brain is even working on the problem when we are not actively and consciously thinking about it. This function is called the default mode network. It is a subconscious process, so we are not aware it's happening. During the time off, our default mode network has been working in the background, looking for a solution, combining different pieces of information, and handing it over to us. In addition, when we are asleep, the brain organizes the information we learned during the day and consolidates it into long-term memory. The brain continues the work even when we are taking a rest or doing something else, which possibly leads to the following two insights about effective learning. Firstly, it implies that we should space our study time rather than compress it into one session. For example, if you can spend 7 hours in total, it's better to distribute it into 1-hour sessions in 7 days, instead of studying for 7 hours straight in a day. By interspacing study sessions, we can make the best use of both the default mode network and memory consolidation by sleep. What matters is having the cycle of studying, resting, and studying again. Another implication is that we should start working on large projects or daunting tasks as soon as possible and willingly stop when we get stuck. Whether it is solving a difficult math problem or writing a long essay, you should begin early on. When you hit a roadblock, don't persist, and take a step back. This is not giving up, but a tactical retreat. The next time you return to work, you can benefit from the background processing your brain has been doing. Ouyang Xiu may not have consciously composed essays on horseback, nor did he come up with good sentences just by sleeping. Probably he had once already worked on it on his desk, and unbeknownst to him, his brain continued the work on a horse and a pillow.

suitable	適した	persist	固執する
consolidate	固める	retreat	退く
interspace	間隔を空ける	compose	作成・作文・作曲する
daunting	ひるむような	tactical	戦術的な
willingly	自発的に	unbeknownst	知られずに

The primary point for effective lea	arning is	We can	n maximize the learning efficiency
and retention by repeating the san			
in what we learn with			
called "interleaving" by cognitive			
importance of this technique, incl			
how to calculate the	of four	of solids,	were given 16
problems to solve. The	were divided into 2 g	groups. The first gro	oup learned one type of solids, like
, and solved 4 problem	ms to calculate the volum	nes of	and repeat the same process with
other 3 types of solids. This strate	gy is often called	study. The sec	ond group of the subjects did
interleaved study; they learned 4 s	solids	,	16 problems
the four types of solids were	A we	ek later, they took	another test. When they solved the
16 problems, the blocked study gr	oup higher		the interleaved, but in the test a
week later, the interleaved study g	group the otl	ner group. This is n	ot only true for mathematics but
also for other subjects, and even f	or practicing sports.	, n	nany people believe that blocked
study is more effective than interle	eaved study; the	_ impression is wro	ng. When we repeat the same
content in a day, we can		,,,	
we When			
, it is obvious that the next	problem will also	, and you	can
because you	What is diffi	cult	is that you can judge
whether or not to use the			
	since the		

The primary point for effective learning is <u>interspaced repetition</u>. We can maximize the learning efficiency and retention by repeating the same content on different days with intervals. However, we should have variations in what we learn within the same day. Mixing related but distinct material during study is called "interleaving" by cognitive scientists, and there are numerous studies demonstrating the importance of this technique, including a 2007 study from University of South Florida. The subjects learned how to calculate the volumes of four different types of solids, and then they were given 16 problems to solve. The participants were divided into 2 groups. The first group learned one type of solids, like cylinders, and solved 4 problems to calculate the volumes of cylinders, and repeat the same process with other 3 types of solids. This strategy is often called blocked study. The second group of the subjects did interleaved study; they learned 4 solids all at once, and then they solved 16 problems where the four types of solids were randomly mixed. A week later, they took another test. When they solved the 16 problems, the blocked study group scored higher on average than the interleaved, but in the test a week later, the interleaved study group outperformed the other group. This is not only true for mathematics but also for other subjects, and even for practicing sports. More importantly, many people believe that blocked study is more effective than interleaved study; the general impression is wrong. When we repeat the same content in a day, we can temporarily perform it with ease, which deceives us that we have acquired it. When learning English, if you have continuously studied the present perfect tense, it is obvious that the next problem will also require it, and you can solve it easily because you have just used it. What is difficult but important is that you can judge whether or not to use the present perfect tense and properly drag it out from your memory even though it has been a while since the last time you used it.

interweave	綴じ込む	impression	印象
subject	被験者	deceive	騙す
volume	体積	present perfect tense	現在完了形
cylinder	円柱	drag out	引き出す
outperform	しのぐ、上回る		