

In the Bible, the book of Genesis ______ that God created plants, animals, and humans. Traditionally, the ability to design and _______ has been considered to be ______ power. Besides the Bible, there are _______ of mythological fictions around the world about the origin of creatures. Today, however, Homo sapiens are _______ this ______ ability. ______ been ______ billion years since the first organisms ________. and all of life has evolved following the principle of _______. But for the first time in the history of biology, we are going to ______ a new ______. To the game of life. ______ the ______ progress of gene editing technologies in recent years, including CRISPR/Cas9, humanity is becoming able to modify the _______, increase agricultural production, and even _______ human capabilities. What kind of future _______ genome editing?

In the Bible, the book of Genesis <u>states</u> that God created plants, animals, and humans. Traditionally, the ability to design and <u>produce creatures</u> has been considered to be <u>divine</u> power. Besides the Bible, there are <u>multiple versions</u> of mythological fictions around the world about the origin of creatures. Today, however, Homo sapiens are <u>acquiring</u> this <u>divine</u> ability. It has been 3.8 billion years since the first organisms <u>appeared on earth</u>, and all of life has evolved following the principle of <u>natural selection</u>. But for the first time in the history of biology, we are going to <u>add</u> a new <u>rule</u> to the game of life. <u>With</u> the <u>exponential</u> progress of gene editing technologies in recent years, including CRISPR/ Cas9, humanity is becoming able to modify the <u>blueprint</u> of life. This technology has the potential to <u>eliminate</u> genetic <u>ailments</u>, increase agricultural production, and even <u>upgrade</u> human capabilities. What kind of future <u>will be brought by</u> genome editing?

the book of Genesis	創世記	exponential	指数関数的、加速度的な
divine	神の、神聖な	modify	修正する、変更する
mythological	神話の	blueprint	青写真、設計図
organism	生物	eliminate	削除する
principle	原理、法則	ailment	病気

Geneticists	for decades for a technology to precisely target and edit specific			
genomic sequences. In 2	012, a paper on the defense system o	f called "CRIS	SPR/Cas9" was published	
in Science magazine. It i	mmediately sparked the imagination	of biologists around the	world. Some bacterial	
species	a a system to the gen	nomes of invading viruse	s to kill them. The system	
recognizes the	_ viruses by their DNA sequence. The	ne are not		
places,	in the vir	us's DNA. Researchers fo	ound that this defense	
system consists of two _	; "seeker" a	and "cutter." The seeker is	s an RNA in	
the bacterial genome that	t looks for the DNA sequence that m	atches itself in the viruses	s' genome. The cutter is a	
named Cas9.	Once the seeker recognizes the virus	,	Cas9 is deployed to cut	
off the DNA at the	by the seeker	, t	he seeker finds the target	
spot and the cu	tter to the spot, and the cutter	the targeted DNA. Re	esearchers discovered that	
we can edit genes	by intro	oducing two manipulation	ns in this mechanism.	
First, we can	the target DNA sequence by replacing	ng the seeker. Second, we	e can in the	
recovery process of DNA	A. When DNA is cut open, it tries to	recover the	, usually the	
other copy of the	_ in the cell. But if a cell is	with foreign DNA,	the gene	
accidentally copies the in	nformation	DNA, rather than	from its	
This works more easily, precisely, and efficiently than any other gene-editing methods ever existed.				

Geneticists had been longing for decades for a technology to precisely target and edit specific genomic sequences. In 2012, a paper on the defense system of microbes called "CRISPR/Cas9" was published in Science magazine. It immediately sparked the imagination of biologists around the world. Some bacterial species have evolved a system to cut off the genomes of invading viruses to kill them. The system recognizes the offender viruses by their DNA sequence. The cuts are not delivered at random places, but at specific targeted sites in the virus's DNA. Researchers found that this defense system consists of two critical components; "seeker" and "cutter." The seeker is an RNA encoded in the bacterial genome that looks for the DNA sequence that matches itself in the viruses' genome. The cutter is a protein named Cas9. Once the seeker recognizes the virus as an enemy, Cas9 is deployed to cut off the DNA at the spot specified by the seeker. To put it simply, the seeker finds the target spot and brings the cutter to the spot, and the cutter snips the targeted DNA. Researchers discovered that we can edit genes with pinpoint accuracy by introducing two manipulations in this mechanism. First, we can <u>change</u> the target DNA sequence by replacing the seeker. Second, we can <u>interfere</u> in the recovery process of DNA. When DNA is cut open, it tries to recover the lost part, usually from the other copy of the gene in the cell. But if a cell is flooded with foreign DNA, then the gene accidentally copies the information from this external DNA, rather than from its backup. This works more easily, precisely, and efficiently than any other gene-editing methods ever existed.

sequence	順序、配列	deploy	配備する、駆動する
paper	論文	snip	チョキチョキ切る
microbe	微生物、細菌	accuracy	正確さ
spark	刺激する、引き起こす	manipulation	操作、処置、改ざん

_____ of CRISPR technologies, we can edit genes precisely and efficiently with a lower cost. In principle, a ______ of human DNA can be ______ to another letter, leaving the 3.2 billion other ______ of the genome largely untouched. The cost and efficiency are also important as research funds and time are limited. Since this new genome editing technology was _____ in 2012, its various potential applications have been suggested. One _____application is _____ improvement. For instance, _____ like high-_____ rice, non-_____ potatoes, and less ______ tomatoes ______ _____ created using CRISPR/Cas9. Given the climate change and food shortages caused by overpopulation, genome editing for crop enhancement is going to be _____. Also, genome editing can _____ the problem of food allergies. Most allergens are specific proteins. We can allergens in food by removing genes associated with the _____ of allergenic proteins. There are already ongoing studies on genome editing in ______ animals, such as chickens that _____ eggs with less allergen. Another application of genome editing is, of course, in . Genetic disorders like hemophilia and muscular dystrophy are caused by mutations in specific genes. Hemophilia, for instance, is a condition ______ cells can't _____ blood clotting factors and bleeding can't easily stop. By employing CRISPR technology, we can cut off the malfunctioning genes in liver cells and _____ the ____ DNA sequence. There are various technical challenges that need to be _____, including _____target _____, in which the tool falsely targets wrong sites and ______. We are not ______. We are not ______, but ______, we will gain the ability to ______ thousands of diseases from our lives.

<u>With the appearance</u> of CRISPR technologies, we can edit genes precisely and efficiently with a lower cost. In principle, a <u>single letter</u> of human DNA can be <u>mutated</u> to another letter, leaving the 3.2 billion other <u>bases</u> of the genome largely untouched. The cost and efficiency are also important as research funds and time are <u>obviously</u> limited. Since this new genome editing technology was <u>unveiled</u> in 2012, its various potential applications have been suggested. One <u>notable</u> application is <u>crop</u> improvement. For instance, <u>crops</u> like high-<u>yield</u> rice, non-<u>toxic</u> potatoes, and less <u>perishable</u> tomatoes <u>have already been</u> created using CRISPR/Cas9.

Given the climate change and food <u>shortages</u> caused by overpopulation, genome editing for crop enhancement is going to be <u>essential</u>. Also, genome editing can <u>solve</u> the problem of food allergies. Most allergens are specific proteins. We can <u>reduce</u> allergens in food by removing genes associated with the <u>production</u> of allergenic proteins. There are already ongoing studies on genome editing in <u>livestock</u> animals, such as chickens that <u>lay</u> eggs with less allergen. Another application of genome editing is, of course, in <u>medicine</u>. Genetic disorders like hemophilia and muscular dystrophy are caused by mutations in specific genes. Hemophilia, for instance, is a condition <u>where liver</u> cells can't <u>produce</u> blood clotting factors <u>properly</u> and <u>thus</u> bleeding can't easily stop. By employing CRISPR technology, we can cut off the malfunctioning genes in liver cells and <u>insert</u> the <u>correct</u> DNA sequence. There are various technical challenges that need to be <u>solved</u>, including <u>off</u>-target <u>effects</u>, in which the tool falsely targets wrong sites and <u>delivers unintended</u> <u>modifications</u>. We are not <u>there yet</u>, but <u>before long</u>, we will gain the ability to <u>purge</u> thousands of diseases from our lives.

mutate	変異させる、変化させる	muscular dystrophy	筋委縮症
toxic	有毒の	clot	凝固させる
perishable	腐りやすい	liver	肝臓
hemophilia	血友病	purge	追放する、除去する

_____ genome editing offers numerous potential benefits, _____ particularly significant _____ challenges. One of the biggest ______ is that this technology could be used not only to _____ disease but also to ______ human capabilities. There is no ______ _____ enhancing. In most cases, medicine is first developed and ______to save people from _______considered ______considered _______ _____. However, the same tools can ______be used to ______the standard. For example, plastic surgery was first developed ______ the First World War to ______ faces got ______ battles. When the war was over, surgeons realized that the same treatments could also turn healthy individuals more beautiful. Today, plastic or cosmetic surgeons millions by upgrading the wealthy, and we ______. Genome editing might follow the same _____. It will begin with parents who hope to ______ fatal genetic ______ their babies. But ______ becomes possible to edit human DNA to replace deadly genes, we might start using the same mechanism to fix less fatal genes, such as ones responsible for autism and _____. Who ______ their child to ______ from any of these? Furthermore, if you _____ provide your child such treatments, wouldn't you want to give them a little more by enhancing their memory, athletic ability, or system? Even if you are personally ______ such upgradings, ______ the neighbors are doing it for their children? Would you _____ to _____ behind them? Any upgradings are initially justified as healing. But once _____, it may _____ being unstoppable by discussions.

While genome editing offers numerous potential benefits, it presents particularly significant ethical challenges. One of the biggest concerns is that this technology could be used not only to cure disease but also to enhance human capabilities. There is no clear line that separates healing from enhancing. In most cases, medicine is first developed and approved to save people from falling below what is considered to be the standard. However, the same tools can then be used to surpass the standard. For example, plastic surgery was first developed during the First World War to treat soldiers whose faces got injured in battles. When the war was over, surgeons realized that the same treatments could also turn healthy individuals more beautiful. Today, plastic or cosmetic surgeons earn millions by upgrading the wealthy, and we take it for granted. Genome editing might follow the same path. It will begin with parents who hope to eliminate fatal genetic ailments from their babies. But once it becomes possible to edit human DNA to replace deadly genes, we might start using the same mechanism to fix less fatal genes, such as ones responsible for autism and obesity. Who would like their child to suffer from any of these? Furthermore, if you are about to provide your child such treatments, wouldn't you want to give them a little more push by enhancing their memory, athletic ability, or immune system? Even if you are personally against such upgradings, what if the neighbors are doing it for their children? Would you dare to have your child lag behind them? Any upgradings are initially justified as healing. But once it is approved, it may end up being unstoppable by moral discussions.

numerous	多数の	autism	自閉症
surpass	優る、上回る	obesity	肥満
plastic surgery	整形外科、整形手術	immune	免疫の

The caste system in	has divided people	into four groups	based on the family they were born	
nto. They believe that individuals in higher caste groups were, but this was				
There is	no differe	nce between Brah	mins and Shudras, Kshatriyas and	
Vaishyas. Brahmins insisted	that they were natural	ly smarter than ev	eryone else, but	
0	f their DNA, we can n	ever find any	to Brahmins.	
Historically, social and econe	omic		genetic differences.	
Rather, they have been the re	esult of cultural and en	vironmental facto	rs which have been justified and	
by fictions. How	wever, the adv	ancement of geno	me editing, the nature of	
inequality may fundamentall	y change. Once it beco	omes possible to u	pgrade Homo sapiens through	
genome editing, we will see	real gaps in physical a	nd abi	lities between an enhanced upper	
class and the rest of society.	These upgraded super	humans will	health, abilities,	
and creativity, which will fur	ther ine	qualities. After	all of these, your reaction	
might be to hope that somebo	ody will the	to stop it.	But we may not be able to	
its progress. In November 20	18, a Chinese scientis	t	created the	
world's first genome-edited babies. He used the CRISPR/Cas9 technology to modify the DNA of twin				
girls, making	to HIV	Many scie	entists and organizations criticized	
the experiment	potential impacts and	violation of	guidelines. However,	
different nations have different	ent I	f some countries u	se genome editing to	
geniuses that f	ar othe	er citizens	country forbids genetic	
engineering,	keep hitting the	?		

The caste system in <u>Hinduism</u> has divided people into four groups based on the family they were born into. They believe that individuals in higher caste groups were intrinsically superior, but this was pure fiction. There is no biological difference between Brahmins and Shudras, Kshatriyas and Vaishyas. Brahmins insisted that they were naturally smarter than everyone else, but even after thorough examination of their DNA, we can never find any sequence unique to Brahmins. Historically, social and economic disparities have not arisen from genetic differences. Rather, they have been the result of cultural and environmental factors which have been justified and <u>amplified</u> by fictions. However, with the advancement of genome editing, the nature of inequality may fundamentally change. Once it becomes possible to upgrade Homo sapiens through genome editing, we will see real gaps in physical and <u>cognitive</u> abilities between an enhanced upper class and the rest of society. These upgraded superhumans will enjoy unprecedented health, abilities, and creativity, which will further accelerate inequalities. After hearing all of these, your reaction might be to hope that somebody will hit the brakes to stop it. But we may not be able to halt its progress. In November 2018, a Chinese scientist had claimed to have created the world's first genome-edited babies. He used the CRISPR/Cas9 technology to modify the DNA of twin girls, making them resistant to HIV infection. Many scientists and organizations criticized the experiment for its potential impacts and violation of ethical guidelines. However, different nations have different moral codes. If some countries use genome editing to produce geniuses that far outperform other citizens whose country forbids genetic engineering, can we still keep hitting the brakes?

caste	カースト制度	unprecendented	未曾有の、空前の
intirinsically	本質的に、本来的に	halt	歯止めをかける
disparity	差異、不均衡	resistant	耐性のある
amplify	増幅する	outperform	しのぐ、性能で上回る