Energy is everywhere <u>in our lives</u>. <u>If</u> you are listening to this on your phone in an air-conditioned room and working your brain to understand the essence of energy, what <u>powers</u> your phone, air conditioners, and your brain is nothing <u>else</u> but energy. Then what is energy? This might be the most difficult question you <u>could ever ask</u>. Surprisingly, even Nobel Prize winners have great <u>trouble providing a satisfactory</u> answer to that <u>seemingly</u> simple question. In Physics today, <u>there is no clear</u> <u>knowledge of what energy is</u>. <u>Though we have no ultimate and comprehensive</u> <u>definition of energy</u>, we <u>still can get closer</u> to understanding the essence by <u>breaking it down into different</u> perspectives. Energy is <u>at the core of challenges that</u> humanity is facing now, <u>and it is also</u> the key to understanding the journey of human society <u>up to this day</u>. Science <u>literacy</u> about energy <u>serves as a vital</u> knowledge for <u>deepening</u> our insights into the world and working <u>towards</u> a <u>brighter</u> future. So, <u>what exactly</u> is energy?

power (v)	動かす、動力供給する	seemingly	外見上は、見たところ
satisfactory	満足のいく	comprehensive	包括的な、網羅的な

The _____ "energy" ______ an ancient Greek word "energeia." An Ancient Greek philosopher Aristotle has given an _____ definition to this concept; _____ capable of doing work. _____ and elusive, _____ and elusive, _____ the essence of energy. Today, energy is _____ understood as something that _____ the source of physical or chemical changes _____ object. In other words, energy is not about a specific substance or phenomenon. Rather, _____ a concept _____ _____ anything that can cause physical or chemical ______ in objects. For example, workers constructing a huge Pyramid carried massive stones by using their muscles to _____ _____ to them, which we call _____ energy. _____ in a _____ is boiling and undergoing a physical transition ______ to gas, that change is being caused by thermal energy. ______ a bicycle on a hilltop that is just about to gain acceleration and go down the hill, we _____ the bicycle to _____ gravitational potential energy. _____ a ____ scientific ______, thermal energy and gravitational potential energy are _____ phenomena; the _____ is _____ the kinetic energy of ______ molecules or _____ in a substance, and the _____ is _____ the earth's gravitational _____. But we can find ______ they are sources capable of doing work, and one can be another. As Aristotle suggested, energy is a concept, _____ take a variety of forms.

The term "energy" derives from an ancient Greek word "energeia." An Ancient Greek philosopher Aristotle has given an <u>abstract</u> definition to this concept; force capable of doing work. It <u>may appear ambiguous</u> and elusive, <u>but he seemed to have grasped</u> the essence of energy. Today, energy is <u>commonly</u> understood as something that <u>serves as</u> the source of physical or chemical changes <u>in an</u> object. In other words, energy is not about a specific substance or phenomenon. Rather, <u>it is</u> a concept <u>that includes</u> anything that can cause physical or chemical <u>alteration</u> in objects. For example, workers constructing a huge Pyramid carried massive stones by using their muscles to <u>apply acceleration</u> to them, which we call <u>kinetic</u> energy. When the water in a <u>kettle</u> is boiling and undergoing a physical transition from liquid to gas, that change is being caused by thermal energy. When there <u>is</u> a bicycle on a hilltop that is just about to gain acceleration and go down the hill, we <u>consider</u> the bicycle to possess gravitational potential energy. From a pure scientific point of view, thermal energy and gravitational potential energy are <u>different</u> phenomena; the former is generally the kinetic energy of <u>vibrating</u> molecules or <u>atoms</u> in a substance, and the <u>latter</u> is <u>what comes from</u> the earth's gravitational <u>pull</u>. But we can find <u>common ground in that</u> they are sources capable of doing work, and one can be <u>converted into</u> another. As Aristotle suggested, energy is a concept, <u>and it can take</u> a variety of forms.

derive	派生する、由来する	thermal energy	熱エネルギー
abstract	抽象的な	undergo	経験する、経る
ambiguous	あいまいな	liquid	液体
elusive	とらえどころのない	gas	気体
substance	物質	gravitational	重力の、重力による
alteration	変化、変更	molecule	分子
acceleration	加速、加速度	atom	原子
kinetic energy	運動エネルギー	convert	変換する

The Science of Energy #3

From a human perspective, energy can be defined as force capable of doing useful work for us, _____ various forms. _____ the flow of energy that is _____ lighting the light bulb in your room ______ source. Originally, it was chemical energy _____ fossil fuel, which turned into thermal energy _____ _____ reactions. The thermal energy _____ water, _____ was transformed into the ______ energy of a steam turbine, creating electric energy. _____ power lines to your home, and the electric energy is converted into light energy by the filament, lighting your room. However, not all energy in is turned into light energy; the conversion ______ is about 10%. According to the _____ _____ of energy, every form of energy can be _____ into another form, and no energy is ever lost in any of these conversions. Then, _____ 90% go? ______ of conversion, some ______ of energy is transformed into ______ and ______. For example, some of the thermal energy within the turbine ______ by heating the surrounding air and the cooling water. _____ electrical energy is transformed into light energy, a _____ is turned into thermal energy _____ the _____ of the filament in the light bulb. No energy is ever lost in any of these conversions, but the _____ of energy has _____ in the process.

From a human perspective, energy can be defined as force capable of doing useful work for us, and it can take various forms. Let us trace the flow of energy that is currently lighting the light bulb in your room back to its source. Originally, it was chemical energy embedded in fossil fuel, which turned into thermal energy through combustion reactions. The thermal energy boils water, and then it was transformed into the kinetic energy of a steam turbine, creating electric energy. It travels along power lines to your home, and the electric energy is converted into light energy by the filament, lighting your room. However, not all energy in petroleum is turned into light energy, every form of energy can be turned into another form, and no energy is ever lost in any of these conversions. Then, where did the rest of 90% go? At each step of conversion, some proportion of energy within the turbine dissipates by heating the surrounding air and the cooling water. When electrical energy is transformed into light energy, a fraction of it is turned into the turned into light energy is ever lost in any of these conversions, but the utility of energy has diminished in the process.

-			_
tracce	たどる、遡る	conservation	保存、不変
embed	埋め込む	proportion	割合、部分
combustion	燃焼	scatter	撒き散らす
power line	送電線	dissipate	消散する
filament	フィラメント、繊維	fraction	部分、かけら
petroleum	石油	diminish	減る、減らす

The Science of Energy #4

In Japanese mythology, the _____ god Amaterasu is also the _____ of the sun. Similarly, there are ______ around the world that serve as both the highest god and the symbol of the sun, such as Quetzalcoatl in Maya and _____, and Ra in _____ people might have somehow realized that all energy on earth is ______ the sun's radiation. The energy in the earth's ______a single source: plants. By the process of _____, they ______ solar energy and ______. eat plants to gain solar energy _____, and _____eat _____to do _____. Homo sapiens has never been the _____. We maintain our _____ functions by _____ plants and animals, and stay warm and _____ metals by cutting down trees and using them _____. Modern industrial society has also been ______ on the sun. Fossil fuels are the ______ of past solar energy, since they were ______ the remains of _____ plants and animals _____ slowly transformed _____ pressure and geothermal heat. Wind and water powers are also indirect use of solar energy. Wind is the phenomenon in which air ______ high-pressure _____ to low-pressure _____, and the differences in _____ pressure _____ the differential heating of Earth's _____ by the sun. Water power ______ the gravitational potential energy of water that is ______ _____ the ocean onto land ______. With some exceptions such as nuclear power and geothermal power generation, all sources of energy _____ in the sun. From eating rice to burning firewood, sailing ships to building pyramids, everything we have done history has been some form of or use of solar energy.

In Japanese mythology, the supreme god Amaterasu is also the goddess of the sun. Similarly, there are numerous deities around the world that serve as both the highest god and the symbol of the sun, such as Quetzalcoatl in Maya and Aztec, and Ra in Egypt. Ancient people might have somehow realized that all energy on earth is derived from the sun's radiation. The energy in the earth's ecosystem comes ultimately from a single source: plants. By the process of photosynthesis, they captured solar energy and packed it into organic compounds. Herbivores eat plants to gain solar energy indirectly, and carnivores eat herbivores to do likewise. Homo sapiens has never been the exception. We maintain our bodily functions by consuming plants and animals, and stay warm and smelt metals by cutting down trees and using them as fuel. Modern industrial society has also been largely dependent on the sun. Fossil fuels are the compressed preservation of past solar energy, since they were originally the remains of ancient plants and animals which have been slowly transformed under pressure and geothermal heat. Wind and water powers are also indirect use of solar energy. Wind is the phenomenon in which air flows from high-pressure areas to low-pressure areas, and the differences in atmospheric pressure arise from the differential heating of Earth's surfaces by the sun. Water power harnesses the gravitational potential energy of water that is lifted from the ocean onto land by evaporation. With some exceptions such as nuclear power and geothermal power generation, all sources of energy eventually end up in the sun. From eating rice to burning firewood, sailing ships to building pyramids, everything we have done throughout history has been some form of direct or indirect use of solar energy.

numerous	多数の	carnivore	肉食動物
deity	神、女神	smelt	精錬する
radiation	放射能、放射線	compress	圧縮する
photosynthesis	光合成	harness	動力化する、活用する
compound	化合物	evaporation	蒸発
herbivore	草食動物	geothermal	地熱の

If almost all the energy on earth ________ the sun's radiation, then what is the source of the solar energy _______? Within the sun, hydrogen fusion reactions are _______, transforming hydrogen into helium. ______this nuclear _______ this nuclear _______ in the total mass, and this decrease in mass is ______ as energy. In other words, the loss of _______ becomes energy. _______ of relativity. We often confuse mass with _______, but they are two ________. Mass is actually a ______ form of energy that _______ the 'inertia' of an object, or in other words, an object's _______ to energy and they are _______. As Einstein discovered, mass is _______ to the ______. As Einstein discovered, mass is _______ to the _______. Before and after these fission reactions, _______, the mass reduces _______, and the reduced mass is released as thermal energy. The rest is the same to thermal power generation; the thermal energy _______ to generate electricity. Thus, we can understand energy _______ from various ________ human life and society, energy can be defined as any force capable of doing useful work for us. Speaking scientifically but ________ for solar ________, on a _______ scale, _______ that make up our bodies and things around us are _________, on a ________ scale.

If almost all the energy on earth <u>derives from</u> the sun's radiation, then what is the source of the solar energy in the <u>first place</u>? Within the sun, hydrogen fusion reactions are <u>constantly taking place</u>, transforming hydrogen into helium. <u>Throughout</u> this nuclear <u>fusion</u> reaction, there is a <u>reduction</u> in the total mass, and this decrease in mass is <u>released</u> as energy. In other words, the loss of <u>quantity</u> becomes energy. It <u>must sound</u> counterintuitive, but this is part of what Einstein <u>unveiled</u> in the <u>Theory</u> of relativity. We often confuse mass with <u>weight</u>, but they are two <u>separate things</u>. Mass is actually a <u>static</u> form of energy that <u>represents</u> the 'inertia' of an object, or in other words, an object's <u>resistance</u> to being moved. All matter is energy <u>at rest</u>. As Einstein discovered, mass is <u>equivalent</u> to energy and they are <u>interchangeable</u>. Every loss of mass results in the release of energy proportional to the <u>square</u> of the speed of light. This principle <u>forms</u> the foundation of nuclear power generation. The <u>collision</u> of <u>neutrons with uranium-235 triggers</u> a chain reaction of nuclear fission. Before and after these fission reactions, <u>again</u>, the mass reduces in <u>total</u>, and the reduced mass is released as thermal energy. The rest is the same to thermal power generation; the thermal energy <u>rotates</u> the <u>steam turbine</u> to generate electricity. Thus, we can understand energy <u>differently</u> from various <u>aspects</u>. In <u>terms of</u> human life and society, energy can be defined as any <u>force</u> capable of doing useful work for us. Speaking scientifically but <u>limitedly within</u> the <u>Earth's atmosphere</u>, energy is about the transformation or <u>preservation</u> of solar <u>radiation</u>. Ultimately, on a <u>cosmic</u> scale, <u>atoms</u> that make up our bodies and things around us are <u>essentially</u> masses of energy. But the <u>exact details still remain unsolved</u>. Physicists around the world are still in the <u>midst</u> of a <u>relentless pursuit</u> of the essence of energy.

hydrogen	水素	equivalent	等しい、等価な
fusion	融合	interchangeable	交換可能な
helium	ヘリウム	proportional	比例した、釣り合った
mass	質量、かたまり	collision	衝突
counterintuitive	直感に反した	neutron	中性子
unveil	明らかにする	uranium	ウラン
Relativity	相対性 (理論)	fission	分裂、核分裂
static	静止した、静的な	relentless	絶え間ない、容赦ない
inertia	慣性		

If almost all the energy on earth <u>derives from</u> the sun's radiation, then what is the source of the solar energy in the <u>first place</u>? Within the sun, hydrogen fusion reactions are <u>constantly taking place</u>, transforming hydrogen into helium. <u>Throughout</u> this nuclear <u>fusion</u> reaction, there is a <u>reduction</u> in the total mass, and this decrease in mass is <u>released</u> as energy. In other words, the loss of <u>quantity</u> becomes energy. It <u>must sound</u> counterintuitive, but this is part of what Einstein <u>unveiled</u> in the <u>Theory</u> of relativity. We often confuse mass with <u>weight</u>, but they are two <u>separate things</u>. Mass is actually a <u>static</u> form of energy that <u>represents</u> the 'inertia' of an object, or in other words, an object's <u>resistance</u> to being moved. All matter is energy <u>at rest</u>. As Einstein discovered, mass is <u>equivalent</u> to energy and they are <u>interchangeable</u>. Every loss of mass results in the release of energy proportional to the <u>square</u> of the speed of light. This principle <u>forms</u> the foundation of nuclear power generation. The <u>collision</u> of <u>neutrons with uranium</u>-235 <u>triggers</u> a chain reaction of nuclear fission. Before and after these fission reactions, <u>again</u>, the mass reduces in <u>total</u>, and the reduced mass is released as thermal energy. The rest is the same to thermal power generation; the thermal energy <u>rotates</u> the <u>steam turbine</u> to generate electricity. Thus, we can understand energy <u>differently</u> from various <u>aspects</u>. In <u>terms of</u> human life and society, energy can be defined as any <u>force</u> capable of doing useful work for us. Speaking scientifically but <u>limitedly within</u> the <u>Earth's atmosphere</u>, energy is about the transformation or <u>preservation</u> of solar <u>radiation</u>. Ultimately, on a <u>cosmic</u> scale, <u>atoms</u> that make up our bodies and things around us are <u>essentially</u> masses of energy. But the <u>exact details still remain unsolved</u>. Physicists around the world are still in the <u>midst</u> of a <u>relentless pursuit</u> of the essence of energy.

hydrogen	水素	equivalent	等しい、等価な
fusion	融合	interchangeable	交換可能な
helium	ヘリウム	proportional	比例した、釣り合った
mass	質量、かたまり	collision	衝突
counterintuitive	直感に反した	neutron	中性子
unveil	明らかにする	uranium	ウラン
Relativity	相対性 (理論)	fission	分裂、核分裂
static	静止した、静的な	relentless	絶え間ない、容赦ない
inertia	慣性		