One of the biggest challenges for humanity in the 21st Century is to ______ energy to guarantee the ______ of a population of 10 billion, ______ the crises of climate change and an ______ you might be overwhelmed by the complexity and the scale of this issue. Every possible solution _______ and ______, and they often make _______ of all nations and _______ institutions. _______ never be an easy solution, nor a perfect answer. We need to have _______ the complicated reality, as well as _______ to continuously _______ the problem. Hopefully more people _______ expecting technologies and _______ the problem.

One of the biggest challenges for humanity in the 21st Century is to provide sufficient energy to guarantee the prosperity of a population of 10 billion, while addressing the crises of climate change and an ecosystem collapse. As soon as you start investigating this matter, you might be overwhelmed by the complexity and the scale of this issue. Every possible solution has its own flaws and strengths, and they often make intricate trade-offs. It requires long-term strenuous effort and a global alliance of all nations and related institutions. Paradoxically, however, if you feel overwhelmed, you are on the right path. There will never be an easy solution, nor a perfect answer. We need to have courage to accept the complicated reality, as well as perseverance to continuously work on the problem. Hopefully more people properly recognize the importance and complexity of this problem without overly expecting technologies and leaning towards ideologies. That is only beginning to truly solve the problem.

sufficient	十分な	trade-off	妥協、代償、トレードオフ
guarantee	保証する、確約する	strenuous	精力的な、熱心な
prosperity	繁栄	alliance	同盟、連合
address (v)	取り組む	paradoxically	逆説的に
investigate	調査する、研究する	perseverance	忍耐強さ
overwhelm	圧倒する、呆然とさせる	complexity	複雑さ
flaw	短所、欠点	ideology	イデオロギー、観念
intiricate	込み入った、複雑な		

The Future of Energy #2

Probably bioethanol makes the best ______ to understand the complexity of energy problems. Bioethanol is a biofuel ______ the _____ of various organic materials, _____ from sugarcane and corn. It is expected to ______ a carbon-neutral _____ for fossil fuels, since the carbon released during ______ was originally the _____ the _____ by plants. Airplanes and ships cannot be _____ by _____, so some form of clean _____ fuel is essential. But it is often criticized for several reasons. First, it's a trade-off between food production and energy. When _____ are used for biofuels, it obviously reduces food supplies and leads to food price _____. Is it ______ to ______ the price of food for the poor? Second, bioethanol has extremely poor _____. When we _____ a certain energy source, we need to ______ its energy profit _____, or EPR; how much energy is gained from the energy invested. For example, oil ______ energy for _____, refining, and transporting, but we can produce far more energy than the energy invested. The EPR of oil is around 6. In other words, for each ______ energy _____, we get six times the energy ______. Production of bioethanol also ______ some input of energy, such as the use of chemical _____ and refinement, and EPR is estimated to be about a loss of 0.9. It is like investing \$100 to get \$90. _____ we produce ______ for bioethanol by ______ oil, using oil directly is clearly more _____ than _____ get bioethanol.

Probably bioethanol makes the best <u>case</u> to understand the complexity of energy problems. Bioethanol is a biofuel <u>produced through</u> the <u>fermentation</u> of various organic materials, <u>primarily</u> from sugarcane and corn. It is expected to <u>serve as</u> a carbon-neutral <u>substitute</u> for fossil fuels, since the carbon released during <u>combustion</u> was originally the <u>one absorbed from</u> the <u>atmosphere</u> by plants. Airplanes and ships cannot be <u>powered</u> by <u>batteries</u>, so some form of clean <u>liquid</u> fuel is essential. But it is often criticized for several reasons. First, it's a trade-off between food production and energy. When <u>grains</u> are used for biofuels, <u>it</u> obviously reduces food supplies and leads to food price <u>spikes</u>. Is it <u>acceptable</u> to <u>drive up</u> the price of food for the poor? Second, bioethanol has extremely poor <u>cost-effectiveness</u>. When we <u>evaluate</u> a certain energy source, we need to <u>examine</u> its energy profit <u>ratio</u>, or EPR; how much energy is gained from the energy invested. For example, oil <u>consumes</u> energy for <u>drilling</u>, refining, and transporting, but we can produce far more energy than the energy invested. The EPR of oil is around 6. In other words, for each <u>unit of energy spent</u>, we get six times the energy <u>in return</u>. Production of bioethanol also <u>requires</u> some input of energy, such as the use of chemical <u>fertilizers</u> and refinement, and EPR is estimated to be about a loss of 0.9. It is like investing \$100 to get \$90. If we produce <u>fertilizers</u> for bioethanol by <u>burning</u> oil, using oil directly is clearly more <u>efficient</u> than <u>using it to get</u> bioethanol.

fermentation	発酵	spike	急上昇
sugercane	サトウキビ	evaluate	評価する
substitute	代替、代理品	examine	調べる
combustion	燃焼	refine	精製する
absorb	吸収する	fertilizer	肥料
supply	供給		

The Future of Energy #3

Talking about energy is ______ talking about the economy. We _____ the future of energy without taking the _____ into _____. a variety of _____ fossil fuels, we are still largely dependent on them _____ because they are so . This might be hard to believe, but oil is actually cheaper than a soft drink. The price of oil is _____, ____ usually less than \$1 per litter. This is ______ because its ______ costs, such as those resulting ______ environmental damage, are not reflected in the oil price. Customers less expensive products, and so do companies. It is unrealistic to go ______ each and every consumer, ______ _____ the carbon footprint of products and choose eco-friendly ones ______ they are expensive. Rather, we should ______ a market condition ______ people voluntarily and ______ take _____ actions. In the past, we've ______ one source of energy to another because the new one was cheaper and more powerful. For example, _____ we stopped burning firewood and started using coal, it was because coal provided a lot more _____ more _____ wood. If products with high carbon emission are , both consumers and businesses will ______ avoid them. What we _____ need is two kinds of innovation: technological innovation to make sustainable energy cheaper, such as ______ the efficiency of solar power generation, and ______ innovation to make carbon- energy more expensive, including a carbon .

Talking about energy is virtually equal to talking about the economy. We cannot discuss the future of energy without taking the market principle into account. Despite a variety of concerns about fossil fuels, we are still largely dependent on them primarily because they are so inexpensive. This might be hard to believe, but oil is actually cheaper than a soft drink. The price of oil is constantly fluctuating, but it has been usually less than \$1 per litter. This is partly because its external costs, such as those resulting from environmental damage, are not reflected in the oil price. Customers prefer less expensive products, and so do companies. It is unrealistic to go around each and every consumer, persuading them to examine the carbon footprint of products and choose eco-friendly ones even if they are expensive. Rather, we should create a market condition where people voluntarily and willingly take preferable actions. In the past, we've moved from one source of energy to another because the new one was cheaper and more powerful. For example, when we stopped burning firewood and started using coal, it was because coal provided a lot more heat more efficiently than wood. If products with high carbon emission are costly, both consumers and businesses will spontaneously avoid them. What we truly need is two kinds of innovation: technological innovation to make sustainable energy cheaper, such as improving the efficiency of solar power generation, and policy innovation to make carbonemitting energy more expensive, including a carbon tax.

virtually	実質的に	preferable	好ましい、適した
principle	原理	emission	排出、放出
fluctuate	変動する	spontaneously	自発的に
external	外部の、外側の		

As of 2023, there is no ________ solution to energy problems. Renewable energy sources, particularly solar and wind ______, are considered to be the ______, but they _______ disadvantages. The ________ is ______ are ________ sources of energy. Obviously, solar panels and wind turbines cannot ________ the night and on windless days, _______. Seasonal _______ also ______ serious challenges. The amount of sunlight that hits the earth's surface ________ across the four seasons, and the variation depends on how far the place is from the _______. Parts of Canada and Russia get about 12 times less sunlight in winter than in summer. ______ the ______ the renewables ________, electricity demand is relatively _______. In order to fill those gaps, _______ we have to use other reliable sources _______, such as thermal or nuclear power, or to store electricity in _______. The _______ is extremely _______. One August, Tokyo is ______ by a massive typhoons that _______ for three days. They cannot ________ solar energy _______ the storm, and the winds are so strong that they will _______ the wind turbines _______. The answer is more than 14 million _______; more ________ solar and wind power ______? The answer to choose the risk and cost of carbon emission or _________. Not will have to utilize thermal or nuclear power to _________ the fluctuation of solar and wind, which ___________. The answer is more than 14 million _______; more ________. Solar and wind power ______? The answer is more than 14 million ________; more _________. Solar and wind produces in seven years. The ___________. Considering the cost of __________. The more __________. Solar and wind produces in seven years. The ___________. Considering the cost of ___________. The more __________. The more _________. The more _________. The more _________. Solar and wind produces in seven years. The _____________. Considering the cost of ___________. The more ___________. The more _________. Solar and wind produces in seven years. The ___________. Considering the cost

As of 2023, there is no perfect solution to energy problems. Renewable energy sources, particularly solar and wind power, are considered to be the favorites, but they have inherent disadvantages. The prominent downside is that they are weatherdependent sources of energy. Obviously, solar panels and wind turbines cannot operate during the night and on windless days, respectively. Seasonal variations also pose serious challenges. The amount of sunlight that hits the earth's surface varies across the four seasons, and the variation depends on how far the place is from the equator. Parts of Canada and Russia get about 12 times less sunlight in winter than in summer. While the supply from the renewables dramatically fluctuates, electricity demand is relatively stable. In order to fill those gaps, either we have to use other reliable sources complementarily, such as thermal or nuclear power, or to store electricity in <u>batteries</u>. The <u>latter</u> is extremely <u>costly</u>. Imagine a hypothetical future where Tokyo gets all its electricity necessary from wind and solar power alone. One August, Tokyo is hit by a massive typhoons that last for three days. They cannot harness solar energy during the storm, and the winds are so strong that they will rip the wind turbines apart if they aren't shut down. How many batteries would they need in order to power Tokyo for three days, until the typhoon passes and they can utilize solar and wind power again? The answer is more than 14 million batteries; more storage capacity than the world produces in seven years. The purchase cost will be about ¥3 trillion annually, averaged over the lifetime of the batteries. Considering the cost of batteries, we will have to utilize thermal or nuclear power to adjust the fluctuation of solar and wind, which poses the next question of whether to choose the risk and cost of carbon emission or those with preserving spent nuclear fuel. The energy issue always involves trade-offs between various factors such as environmental impacts, reliability, generation costs, and so on.

inherent	固有の、生まれつきの	stable	安定的な
prominent	顕著な、傑出した	reliable	信頼性のある
downside	否定的な側面	complimentarily	補完的に
respectively	それぞれ、各々	harness	動力化する、利用する
vary	異なる	rip	引き裂く、剥ぎ取る
equator	赤道	preserve	保存する

The Future of Energy #5

Nobody wants to experience 2020 ______ to the COVID-19 pandemic, we were ______ _____ our homes, a lot of businesses went ______, and millions of people _____ their jobs. _____ all this _____, the _____ of economic activities ______ only a 4.5% decrease in _____ compared to the previous year. The _____ is that the energy issue cannot be _____ by simple saving ______. Of course, it is important to cut ______ _____ never be enough. Rather, we will need more energy consumption in the future. The world population is going to reach 10 billion, and a billion people ______ don't have _____access to electricity. There is a strong ______between a country's ____ income and the amount of energy used by its people. As ______, we have to provide reading light to study in the evenings, ______ to _____, and infrastructure to ______ clean and cheap water for all of us on this planet. The world ______ more energy so that all of us _____, including the _____, but we need to do this _____ releasing any more ______. This is impossible ______ technologies. Therefore, we have to ______ more resources into Research and Development, ______ to improve the capacity and cost performance of ______, increase the efficiency of renewables, make nuclear _____ commercially _____, ____ a smart grid that enables efficient _____ of _____ within a community by _____ energy _____ and ____, and so on. of us all, but ______ consumption of energy does not necessarily make us happier. Therefore, human society needs to ______ in two ways; technological maturity to power everyone reliably and sustainably, and psychological maturity to find happiness ______ we already have.

Nobody wants to experience 2020 again. Due to the COVID-19 pandemic, we were confined to our homes, a lot of businesses went <u>bankrupt</u>, and millions of people lost their jobs. Despite all this agony, the suspension of economic activities led to only a 4.5% decrease in carbon emissions compared to the previous year. The implication is that the energy issue cannot be solved by simple saving efforts alone. Of course, it is important to cut down on waste. But it will never be enough. Rather, we will need more energy consumption in the future. The world population is going to reach 10 billion, and a billion people still don't have reliable access to electricity. There is a strong correlation between a country's per capita income and the amount of energy used by its people. As humanitarian duties, we have to provide reading light to study in the evenings, refrigeration to store vaccines, and infrastructure to ensure clean and cheap water for all of us on this planet. The world requires more energy so that all of us thrive, including the poorest, but we need to do this without releasing any more greenhouse gasses. This is impossible with existing technologies. Therefore, we have to invest more resources into Research and Development, specifically to improve the capacity and cost performance of batteries, increase the efficiency of renewables, make nuclear fusion commercially viable, establish a smart grid that enables efficient redistribution of power within a community by monitoring energy demand and supply, and so on. At the same time, a number of studies suggest that our well-being and income do not correlate beyond a certain point. Sufficient energy supply is essential to ensure the welfare of us all, but abundant consumption of energy does not necessarily make us happier. Therefore, human society needs to mature in two ways; technological maturity to power everyone reliably and sustainably, and psychological maturity to find happiness out of what we already have.

confine	監禁する	humanitarian	人道的な
bankrupt	破産した、倒産した	refrigeration	冷蔵、冷却設備
agony	苦痛、苦悩	thrive	栄える、よく育つ
suspension	一時的停止、中断	viable	実現可能な
implication	示唆、含意	redistribution	再配分
correlation	相関関係	mature	成熟した
per capita	一人あたり		