Human history can be seen as a	and over the			
and of energy	prehistoric times, humans			
unable to without the _				
sapiens have exceptionally large brains,	consumes 20 to 25 percent of all			
metabolic energy, compared to around 10 percent i	n other and just 3-5 percent			
in other In order to maintain such a hu	ge of energy,			
be a reduction of energy consumption in	other The solution was to			
the energy of;, cool	king. By heating up food, it becomes			
easier to, digest, and calories and	Wild chimpanzees			
spend six hours or more each day just chewing their food, humans spend only				
about an hour a day. The high energy need of the b	rain was by a			
reduced energy need in digestive systems. In other	words, our huge brain was possible by			
externalizing the energy for food dige	stion. Biologically speaking, a human			
body cannot be maintained energy consumption. Beginning				
of fire, how has humanity discovered various ways to,				
store, and utilize energy outside our own bodies more and?				

Human history can be seen as a <u>series of struggle</u> and <u>development</u> over the <u>acquisition</u> and <u>utilization</u> of energy. Even from prehistoric times, humans <u>have been</u> unable to <u>survive</u> without the <u>addition</u> of external energy. Homo sapiens have exceptionally large brains, <u>and it</u> consumes 20 to 25 percent of all metabolic energy, compared to around 10 percent in other <u>primates</u> and just 3-5 percent in other <u>mammals</u>. In order to maintain such a huge <u>expenditure</u> of energy, <u>there had to</u> be a reduction of energy consumption in other <u>organs</u>. The solution was to <u>harness</u> the energy of <u>fire</u>; <u>namely</u>, cooking. By heating up food, it becomes easier to <u>chew</u>, digest, and <u>absorb</u> calories and <u>nutrients</u>. Wild chimpanzees spend six hours or more each day just chewing their food, <u>while</u> humans spend only about an hour a day. The high energy need of the brain was <u>partly offset</u> by a reduced energy need in digestive systems. In other words, our huge brain was possible by externalizing the energy <u>required</u> for food digestion. Biologically speaking, a human body cannot be maintained <u>without external</u> energy consumption. Beginning from the use of fire, how has humanity discovered various ways to <u>collect</u>, store, and utilize energy outside our own bodies more <u>abundantly</u> and <u>efficiently</u>?

struggle	苦闘する、もがく	harness	動力化する、利用する
acquisition	獲得	namely	すなわち、正確には
utilization	利用、活用	offset	相殺する、帳消しする
prehistoric	有史以前の	externalize	外部化する
external	外部の、外側の	abundantly	豊富に
metabolic	代謝の		

Human History of Energy #2

The second	_ breakthrough in	the history of ener	gy is agricult	ure l	nistory, the
sun has been the					
percent of	solar energy is tra	nsformed by	int	o chemical energy	in plants,
the essenti	ial foundation for a	all animals, includi	ing humankir	nd agr	iculture, all
people	as hunter	r-gatherers. Our an	cestors made	their living by wa	ılking
through woods to colle	ct mushrooms and	running across pla	ains to hunt a	nimals. Whether ir	n rainforests
or, only a _	of the	biomass is	for u	ıs,	
limitation		accessil	ble calories. F	From 10,000 B.C.	,
farming began	around the	world, which drar	natically tran	sformed human so	cieties. In
terms of the history of e	energy acquisition,	, agriculture means	s the	use of solar	energy in a
	We	all wild a	nimals and p	lants from the land	l, cultivate a
single species, and	V	veeds and	The result v	was remarkable. Fi	irst,
agricultural societies co	ould fa	r higher population	n densities that	an hunter-gatherer	societies.
Second, farming began					
a rang	ge of activities othe	er than producing f	food. The den	ser population and	l energy
surplus	to	o highly complex a	and	·····	_societies.
By the end of the 19th	÷				
energy that photosynthe					
reached 30 million in th	ne of the	18th Century, and	almost		the rest
of the Edo period (-186	8), which suggests	s that,	on	the efficient utiliz	ation of
solar energy, this is the	maximum populat	tion capacity that t	he Japanese _		_

The second significant breakthrough in the history of energy is agriculture. Throughout history, the sun has been the direct or indirect source of almost all human activities. Only about 0.05 percent of incoming solar energy is transformed by photosynthesis into chemical energy in plants, providing the essential foundation for all animals, including humankind. Before agriculture, all people had been living as hunter-gatherers. Our ancestors made their living by walking through woods to collect mushrooms and running across plains to hunt animals. Whether in rainforests or savannah, only a fraction of the entire biomass is edible for us, so there was an inherent limitation in the amount of accessible calories. From 10,000 B.C. onwards, farming began sporadically around the world, which dramatically transformed human societies. In terms of the history of energy acquisition, agriculture means the exclusive use of solar energy in a specific piece of land. We drive away all wild animals and plants from the land, cultivate a single species, and constantly expel weeds and vermin. The result was remarkable. First, agricultural societies could support far higher population densities than hunter-gatherer societies. Second, farming began creating an energy surplus that allowed some members of society to engage in a range of activities other than producing food. The denser population and energy surplus eventually paved the way to highly complex and advanced hierarchical societies. By the end of the 19th Century, however, vields approached a limit since the yearly amount of energy that photosynthesis can <u>capture</u> from the sun is <u>finite</u>. For example, the population in Japan reached 30 million in the middle of the 18th Century, and almost leveled off during the rest of the Edo period (-1868), which suggests that, relying solely on the efficient utilization of solar energy, this is the maximum population capacity that the Japanese Archipelago can sustain.

photosynthesis	光合成	vermin	害獣、害虫
hunter-gatherer	狩猟採集民	density	密度
fraction	一部、断片	surplus	余剰、黒字
biomass	生物量	pave	舗装する、道を敷く
edible	食用可能な	hierarchical	階層的な、階級制度の
inherent	内在する、固有の	yield	収穫高、産出量
sporadically	散発的に	finite	有限の
exclusive	独占的な、排他的な	level off	安定する、横ばいになる
expel	追い出す	archipelago	列島

Agriculture enabled humankind to ______ the solar energy raining on the land. But utilizing the sun's radiation ______ was not _____ to ____ the extraordinary population and industrial productivity of the modern times. It was the use of fossil fuels that broke through the _____ limitation of agriculture. Fossil fuels, in a _____ sense, are dead _____ of ancient plants and animals. They ______ solar energy as chemical energy ______ photosynthesis. After they died and _____ under the ground, _____ pressure and geothermal heat gradually transformed them into substances with high energy densities. In other words, fossil fuels are a storage of solar radiation energy that fell on Earth for hundreds of millions of years. Today, we are ______ these ancient ______ of solar power to _____ the expanding population by producing chemical ______, travel around the world with jet planes, and ______huge shopping ______. We don't pay the ______ price for any of these. They are _____ by ancient sunlight. Today, the _____ person in Japan consumes energy _____ 4500 Watts, and more than 80 percent of that comes _____ burning _____, oil, and gas. ______ to generate the ______ of energy by employing laborers pedaling exercise bicycles, you _____ 270 slaves working eight-hour shifts each. By analogy, we can also understand the historical ______ on forest resources in pre-modern civilizations. For example, a 40-year-old tree can be ______ a mass of solar energy ______ over the past 40 years ______. Technological development, cultural advancement, and education systems are only possible in societies with _____ energy surplus. Forest resources have given us a ______ energy surplus ______ they are all cut down. Throughout history, progress of human society has been _____ by nature's _____ of past solar energy.

Agriculture enabled humankind to monopolize the solar energy raining on the land. But utilizing the sun's radiation falling at this very moment was not enough to achieve the extraordinary population and industrial productivity of the modern times. It was the use of fossil fuels that broke through the inherent limitation of agriculture. Fossil fuels, in a literal sense, are dead remains of ancient plants and animals. They stored solar energy as chemical energy through photosynthesis. After they died and buried under the ground, earth pressure and geothermal heat gradually transformed them into substances with high energy densities. In other words, fossil fuels are a storage of solar radiation energy that fell on Earth for hundreds of millions of years. Today, we are tapping into these ancient reserves of solar power to feed the expanding population by producing chemical fertilizer, travel around the world with jet planes, and operate huge shopping malls. We don't pay the whole price for any of these. They are subsidized by ancient sunlight. Today, the average person in Japan consumes energy at the rate of about 4500 Watts, and more than 80 percent of that comes from burning coal, oil, and gas. If you were to generate the same amount of energy by employing laborers pedaling exercise bicycles, you would need 270 slaves working eight-hour shifts each. By analogy, we can also understand the historical dependence on forest resources in pre-modern civilizations. For example, a 40-year-old tree can be viewed as a mass of solar energy accumulated over the past 40 years on that spot. Technological development, cultural advancement, and education systems are only possible in societies with sufficient energy surplus. Forest resources have given us a temporary energy surplus until they are all cut down. Throughout history, progress of human society has been invested by nature's reservoir of past solar energy.

		•	
monopolize	独占する、占有する	mass	かたまり
tap into	引き出す、活用する	sufficient	十分な
fertilizer	肥料	temporary	一時的な、当面の
subsidize	補助金を出す	reservoir	貯水池、宝庫

Whether it is building a pyramid, cultivating farmland, or ______, there has to be an input of kinetic energy. Until a _____ in history, humans had only one machine capable of converting solar energy into kinetic energy: the body. First, _____ and _____ the sun's radiation energy as chemical energy through photosynthesis. Then, in the process of , the bodies of animals, including Homo sapiens, _____, which we call food, and convert the chemical energy into the movement of muscles. _____ the only way to _____ kinetic energy _____ forms of energy, _____ the discovery of steam engines in the 18th Century. A steam engine burns some kind of fuel, such as coal, and use the resulting heat to boil water, producing steam. As the steam _____, it pushes a piston. The piston moves, and anything that is connected to the piston moves as well. The point is ______ successfully converted thermal energy into kinetic energy. _____, the Industrial Revolution has been a revolution in energy conversion. Previously, humans could ______ energy only in the same form _____ extracted. For example, pre-modern societies used water ______ to _____ the flow of rivers to grind grain, and burned ______ to _____. In _____ case, there is no conversion of energy form. The ______ turns kinetic energy of water into kinetic energy of millstones, and the ______ uses thermal energy in the form of thermal energy ______. Steam engines humanity that any type of energy can be transformed into a useful form, ______ the right machine. In particular, fossil fuels _______ became valuable as we have discovered a way to useful energy from thermal energy.

Whether it is building a pyramid, cultivating farmland, or weaving cloth, there has to be an input of kinetic energy. Until a certain point in history, humans had only one machine capable of converting solar energy into kinetic energy: the body. First, grain and grass fix the sun's radiation energy as chemical energy through photosynthesis. Then, in the process of metabolism, the bodies of animals, including Homo sapiens, burn these organic fuels, which we call food, and convert the chemical energy into the movement of muscles. This had been the only way to generate kinetic energy from other forms of energy, until the discovery of steam engines in the 18th Century. A steam engine burns some kind of fuel, such as coal, and use the resulting heat to boil water, producing steam. As the steam expands, it pushes a piston. The piston moves, and anything that is connected to the piston moves as well. The point is that it has successfully converted thermal energy into kinetic energy. At heart, the Industrial Revolution has been a revolution in energy conversion. Previously, humans could harness energy only in the same form as it was extracted. For example, pre-modern societies used water wheels to capture the flow of rivers to grind grain, and burned firewood to smelt iron. In either case, there is no conversion of energy form. The former turns kinetic energy of water into kinetic energy of millstones, and the latter uses thermal energy in the form of thermal energy as it is. Steam engines taught humanity that any type of energy can be transformed into a useful form, if we could just invent the right machine. In particular, fossil fuels suddenly became valuable as we have discovered a way to extract useful energy from thermal energy.

weave	織る	grind	挽く、粉砕する
kinetic energy	運動エネルギー	smelt	精錬する、溶解する
convert	転換する、変換する	millstone	石臼
steam engine	蒸気機関	thermal	熱の
extract	取り出す、抽出する	grind	挽く、粉砕する

Human History of Energy #5

The last breakthrough in the history of energy is the	of electricity	the
18th Century to the end of the 19th Century, humanity		
developing a technologies necessary to	_electric energy	
Electricity was revolutionary in the following two aspects.		
the flexibility of energy conversion water		
of water into thermal energy to warm their house. Steam en	ngines could turn thermal	energy into kinetic
energy, but they couldn't use the kinetic energy to	their room. Electric energy	gy can be the
of of energy. Today, we can	n generate electric energy	at a
power station, and it can be turned into thermal energy to _		
turbine can eventually be transformed into light energy by	your LED. Electricity is th	ne
, so to speak. Any source of energy, it's	electr	ic energy, can be
harnessed as a useful form of energy. Second, electric pow	er has enabled the	
transmission of energy. Before electricity, energy could on	ly be	
For example, millstones to	wheat powered	by a water wheel
next to rivers. Today, in contrast,	, energy produced by hydr	o turbines at the
Kurobe Dam the night in Osaka, 300 kilomete		
Human history can be seen as the for more	energy in more usef	ul and
forms more at lower costs	_ the discovery of electric	ity,
the freedom of conversion and transmission of	energy, which	_a
completion in the history of energy. However, there are stil	l challenges su	uch as the
of fossil fuels and climate change. How will th	e for energy	in the 21st
Century?		

The last breakthrough in the history of energy is the implementation of electricity. From the mid 18th Century to the end of the 19th Century, humanity spent one and a half centuries discovering and developing a series of technologies necessary to make electric energy commercially viable. Electricity was revolutionary in the following two aspects. First, it has dramatically increased the flexibility of energy conversion. Medieval water wheels could not turn the kinetic energy of water into thermal energy to warm their house. Steam engines could turn thermal energy into kinetic energy, but they couldn't use the kinetic energy to light their room. Electric energy can be the medium of various forms of energy. Today, we can generate electric energy at a hydroelectric power station, and it can be turned into thermal energy to heat your room. Electricity from a steam turbine can eventually be transformed into light energy by your LED. Electricity is the universal currency, so to speak. Any source of energy, once it's converted into electric energy, can be harnessed as a useful form of energy. Second, electric power has enabled the long-distance transmission of energy. Before electricity, energy could only be consumed at the very place it was extracted. For example, millstones to grain wheat powered by a water wheel had to be right next to rivers. Today, in contrast, energy produced by hydro turbines at the Kurobe Dam illuminates the night in Osaka, 300 kilometers away in power transmission distance. Human history can be seen as the guest for more abundant energy in more useful and versatile forms more efficiently at lower costs. With the discovery of electricity, we have achieved the freedom of conversion and transmission of energy, which marked a certain completion in the history of energy. However, there are still ongoing challenges such as the depletion of fossil fuels and climate change. How will the quest for energy unfold in the 21st Century?

implementation	実行、実装	illuminate	照らす、明るくする
viable	実現可能な、生存可能な	versatile	汎用的な、多才な
medieval	中世の	ongoing	継続中の
medium	媒体、媒介	depletion	枯渴、消耗
hydroelectric power station	水力発電所	unfold	広がる、展開する
transmission	送信、伝達		