If you think that yo	u are too busy to	_ time for exe	rcising,	you	
don't have time	because you do	n't exercise.			
that exercising is _	our phy	our physical health, also			
necessary for maint	caining and improving or	ar	_ abilities an	ıd	
psychological cond	itions. A number of stud	ies	that pe	eople	
with regular exercis	se habits can enjoy great	er performanc	ee and		
have more	to stress, and	the risk	i	illness. If	
you are	work or study, yo	ou should actu	ıally		
exercising to	improve	How is br	ain performa	ance	
related to physical	activities? Why is our bo	ody designed t	to function _		
exercising?	What kind of exercise is	to		_	
benefits	s?				

If you think that you are too busy to <u>spare</u> time for exercising, <u>perhaps</u> you don't have time <u>precisely</u> because you don't exercise. <u>It is evident</u> that exercising is <u>important for</u> our physical health, <u>but it is</u> also necessary for maintaining and improving our <u>cognitive</u> abilities and psychological conditions. A number of studies <u>have shown</u> that people with regular exercise habits can enjoy greater performance and <u>concentration</u>, have more <u>resilience</u> to stress, and <u>reduce</u> the risk <u>of mental</u> illness. If you are <u>occupied with</u> work or study, you should actually <u>invest time in</u> exercising to improve <u>your efficiency</u>. How is brain performance related to physical activities? Why is our body designed to function <u>better with</u> exercising? What kind of exercise is <u>optimal</u> to <u>enjoy</u> its cerebral benefits?

spare	割く、余分に使う	occupied	忙しい、専念している
evident	明らかな、はっきりした	efficiency	効率
cognitive	認知の、認識に関する	optimal	最適な
psychological	心理的な、精神的な	cerebral	脳の、大脳の
resilience	回復力、抵抗力		

Physical exercise makes us In a study do	one in elementary schools in,				
searchers academic performance of students who had PE lessons every day with					
those who had them only twice a week. Children v	those who had them only twice a week. Children with daily PE classes had higher				
the first language, mathematics, and the foreign language. Similar results					
in studies conducted in the	Illinois and Nebraska in the US. How does				
exercising contribute to intellectual per	formance? Experiments using mice have				
shown that physical activity leads to	of BDNF in the brain, particularly in				
the hippocampus. The hippocampus,					
in the creation of new memorie	s. BDNF brain				
neurotrophic factor, which supports the	and survival of, the				
formation of synaptic connections, and	the aging of cells. Put simply, BDNF is a				
that helps grow memory related parts	of the brain, and the best way to				
increase it is physical exercise. Another study on _	has demonstrated that people				
who continued	_ exercise for a year showed a 2 percent				
increase in volume,	didn't exercise experienced a 1.4				
percent decrease. The hippocampus typically					
or To gain this b	penefit, you need to perform				
exercise, such as wal	king, jogging, or swimming, for 30 to 40				
minutes, two to three times per week. If you engage	ge in a intellectual work, you				
should make exercise a precisely to main	ntain your cognitive performance.				

Physical exercise makes us <u>smarter</u>. In a study done in elementary schools in <u>Sweden</u>, researchers <u>compared</u> academic performance of students who had PE lessons every day with those who had them only twice a week. Children with daily PE classes had higher <u>scores</u> in the first language, mathematics, and the foreign language. Similar results <u>have been observed</u> in studies conducted in the <u>states of Illinois</u> and Nebraska in the US. How does exercising contribute to <u>enhanced</u> intellectual performance? Experiments using mice have shown that physical activity leads to <u>increased levels</u> of BDNF in the brain, particularly in the hippocampus. The hippocampus, <u>located near</u> the center of the brain, <u>plays</u> a <u>crucial role</u> in the creation of new memories. BDNF <u>stands for</u> brain-<u>derived</u> neurotrophic factor, which supports the <u>growth</u> and survival of <u>neurons</u>, <u>promotes</u> the formation of synaptic connections, and <u>helps delay</u> the aging of cells. Put simply, BDNF is a <u>molecule</u> that helps grow memory related parts of the brain, and the best <u>known</u> way to increase it is physical exercise. Another study on <u>human adults</u> has demonstrated that people who continued <u>moderate to high-intensity</u> exercise for a year showed a 2 percent increase in <u>hippocampal</u> volume, <u>while those who</u> didn't exercise experienced a 1.4 percent decrease. The hippocampus typically <u>shrinks</u> with aging, but regular exercise can <u>prevent</u> or <u>even reverse it</u>. To gain this benefit, you need to perform <u>moderately intense aerobic</u> exercise, such as <u>brisk</u> walking, jogging, or swimming, for 30 to 40 minutes, two to three times per week. If you engage in a <u>sedentary</u> intellectual work, you should make exercise a <u>habit</u> precisely to maintain your cognitive performance.

academic	学問の、学業の	volume	容積、体積
intellectual	知的な、知性の	reverse	逆転させる、覆す
hippocampus	海馬	moderately	適度に、ほどよく
crucial	重大な、決定的な	aerobic	有酸素の
crucial	重大な、決定的な	sedentary	座りがちな、運動不足の
neurotrophic	神経栄養の		

Physical exercise	our concentra	ation. This inclu	des both an im	mediate b	enefit
the exercise and a lo	ng-term gai	ned from regula	r continuous w	orkout. T	he short-term benefit
	which functions like	_			
	an continuously direct				
					_ studies have shown
that the level of dop	amine increases after	physical activiti	es,		for a few hours. As
	eaches the core region				
for the long-term be	nefit, regular exercisi	ng habits		to in	ncrease the
	tex. This region work				
responsible for direc	ting attention exclusi	vely to	informati	on and exe	ercising self-control
for long-term goals	rather than		When you are		
	he prefrontal cortex h				
When you are	by a	from you	r phone	_ studying	g, this region judges
	abit. The reason why				
gatherer lifestyle of	our ancestors.	was ru	nning		or collecting nuts in a
dangerous wood,	physica	l activities	their	survival d	epended. When our
ancestors	_ choose the right tar	get of their atter	ntion while mo	ving,	
Therefore,	the brain has	to optimize	its focus	inten	se physical activities.

Physical exercise enhances our concentration. This includes both an immediate benefit right after the exercise and a long-term reward gained from regular continuous workout. The short-term benefit involves dopamine, which functions like internal currency within the brain's reward and attention systems. The brain can continuously direct its interest and attention to a certain object when an appropriate level of dopamine circulates through the relevant regions. Several studies have shown that the level of dopamine increases after physical activities, and it continues for a few hours. As a result, dopamine reaches the core regions of the reward system, making it easier to stay focused. As for the long-term benefit, regular exercising habits have been shown to increase the volume of the prefrontal cortex. This region works as a supervisor of the whole brain. It is responsible for directing attention exclusively to relevant information and exercising self-control for long-term goals rather than immediate impulses. When you are overwhelmed with numerous tasks, the prefrontal cortex helps you prioritize them and focus on each task one by one. When you are distracted by a notification from your phone while studying, this region judges whether to react to or ignore it. This critical part of the brain is enhanced by a regular exercising habit. The reason why exercise fine-tunes our attention lies in the hunter-gatherer lifestyle of our ancestors. Whether it was running after prey or collecting nuts in a dangerous wood, it involved physical activities on which their survival depended. When our ancestors failed to choose the right target of their attention while moving, it meant their death. Therefore, the brain has evolved to optimize its focus during intense physical activities.

concentration	集中力	notification	通知、知らせ
dopamine	ドーパミン	distraction	気を散らすもの、注意散漫
reward	報酬、喜び	fine-tune	微調整する、調整する
impulse	衝動	ancestor	祖先
overwhelmed	圧倒された、手に負えない	prey	獲物
prioritize	優先順位をつける		

Physical exercise improves		to deal with str	ess. To understa	and this bene	fit, we need to
know about a hormone	cortisol. O	ne of the major	of this h	ormone is to	raise the
and	in res	ponse to stress	. Due t	to the increase	ed
, the brain and	d muscles can r	eceive a lot of en	ergy and oxyge	en and better	deal with the
some . Fi	rstly, excessive	or chronic incre	ase in cortisol o	can lead to va	rious harms,
including damage,					
Secondly, the cortisol system especially those related to heart to hear the cortisol system. The good news	m responds not numan relations	only to physical hips,	threats but also aa	o to psycholo of c	gical ones— hronic cortisol
Physical exerc	_		_		•
beneficial to health. If you					
exercising, such					
accustomed to stress respon					
Furthermo					
of stress exerci	se	the	, , ,	and	systems,
improving their efficiency a	ındre	ducing the amou	nt of energy an	d oxygen nee	eded to produce
the In othe					
example, those who don't _			u	ра	require less
cortisol than those who bec					
social stressors as well. Phy					
stress hormone.					
DI : 1 : :	1.11.		1.1.1	1 . 1	

Physical exercise improves our ability to deal with stress. To understand this benefit, we need to know about a hormone <u>called</u> cortisol. One of the major <u>roles</u> of this hormone is to raise the <u>heart rate</u> and <u>blood pressure</u> in response to stress stimuli. Due to the increased bloodstream, the brain and muscles can receive a lot of energy and oxygen and better deal with the threat that prompted the stress response. Cortisol is essential for our survival, but it also has some problems. Firstly, excessive or chronic increase in cortisol can lead to various harms, including neural damage, impaired activity of prefrontal cortex, and declined immune function. Secondly, the cortisol system responds not only to physical threats but also to psychological ones—especially those related to human relationships, which are a common cause of chronic cortisol exposure. The good news is that regular exercise is very effective to optimize the cortisol system. Physical strain in exercising is also a form of stress, but it is short-term and beneficial to health. If you experience an increased heart rate and blood pressure on a daily basis through exercising, such stress responses are not unusual for your system. Your body becomes accustomed to stress responses, refraining from overreactions and recovering quickly to a normal state. Furthermore, regular exercise reduces the amount of cortisol for the same level of stress. Habitual exercise strengthens the respiratory, circulatory, and muscular systems, improving their efficiency and thereby reducing the amount of energy and oxygen needed to produce the same output. In other words, those who exercise can perform well with less cortisol. For example, those who don't get out of breath when climbing up a staircase require less cortisol than those who become winded, and the former are likely to show lower levels of cortisol for social stressors as well. Physical exercise serves as training to minimize the <u>secretion</u> of the stress hormone.

cortisol	コルチゾール	strain	負担、緊張
stimulus	刺激	accustomed	慣れた、習慣的な
prompt	引き起こす、促す	refrain	控える、差し控える
chronic	慢性的な、長期的な	secretion	分泌
impair	損なう、弱める	respiratory	呼吸の
exposure	暴露、さらされること	circulatory	循環の

The brain has	movements.	Among the	_ number of spe	ecies, only the	ose who move
possess a brain. Plant species don't have brains because they don't move. This					
600 million ye	ars ago to	the surround	ling environmen	t and effectiv	ely
it	and	involve hi	ghly complicate	d information	n processing.
hւ					
estimated the	, and	a with	the right	and,	their brain had
to process incredibly comp	olex and	cognitive worl	k. The brain has	to recognize	the changing
environment through the _	,,		the precise po	osition of eacl	h body part in
the perceived space, and _					
also understand the compl	exity of motor co	ontrol by looking	at the developm	nent of	
in the last sev	veral decades. In	1997, computers	had already	hւ	uman beings in
the "intellectual" activity	of	the best move _		chess.	. However, it
was only around 2020 who	en robots became	e capable of a	simple to	ask of	a
chess and moving _					
for movements. All of our	intellectual activ	ities—	_, language, dat	a analysis,	
are	uses	of the brain that c	leveloped for ph	ysical action.	. Running in
the park far mo	re complex cogn	itive activities in	a far larger part	of the brain t	:han a
crossword puzzle	It is no	wonder that exer	cising is effective	ve for the dev	elopment and
maintenance of our cognit	ive]	For	haven't had ar	ny connection	is with
exercise, even a 30-minute	e walk a day can	be a good way to	start. If you wa	ant to	_ your brain's
performance work or	study, the	_ thing you shoul	ld do is to	30 mir	nutes of
exercise to spend 30 more	minutes you	ır desk.			

The brain has evolved for movements. Among the vast number of species, only those who move possess a brain. Plant species don't have brains because they don't move. This intricate organ emerged 600 million years ago to perceive the surrounding environment and effectively <u>navigate</u> it. <u>Spatial recognition</u> and <u>motor control</u> involve highly complicated information processing. When our ancestral hunter-gatherers ran through the forest by dodging roots and branches, estimated the distance to prey, and threw a spear with the right angle and force, their brain had to process incredibly complex and <u>delicate</u> cognitive work. The brain has to recognize the changing environment through the <u>five senses</u>, constantly update the precise position of each body part in the perceived space, and delicately coordinate muscular movements of the whole body. We can also understand the complexity of motor control by looking at the development of artificial intelligence in the last several decades. In 1997, computers had already outperformed human beings in the "intellectual" activity of <u>figuring out</u> the best move <u>in the game of</u> chess. However, it was only around 2020 when robots became capable of a seemingly simple task of picking up a chess piece and moving it to another square. The brain has evolved not for work or study but for movements. All of our intellectual activities—computation, language, data analysis, and so forth—are merely secondary uses of the brain that developed for physical action. Running in the park requires far more complex cognitive activities in a far larger part of the brain than solving a crossword puzzle in a chair. It is no wonder that exercising is effective for the development and maintenance of our cognitive capacities. For those who haven't had any connections with exercise, even a 30-minute walk a day can be a good way to start. If you want to improve your brain's performance at work or study, the last thing you should do is to cut out 30 minutes of exercise to spend 30 more minutes at your desk.

intricate	複雑な、入り組んだ	outperform	より優れる、上回る
navigate	操作する、進路を決める	secondary	二次的な、副次的な
spatial	空間の、空間的な	capacity	能力、才能
recognition	認識、認知	cut out	削る、省く
coordinate	調整する、協調させる		